A General System of Nonlinear Functional Equations in Non-Archimedean Spaces
نویسندگان
چکیده
منابع مشابه
System of AQC functional equations in non-Archimedean normed spaces
In 1897, Hensel introduced a normed space which does not have the Archimedean property. During the last three decades theory of non--Archimedean spaces has gained the interest of physicists for their research in particular in problems coming from quantum physics, p--adic strings and superstrings. In this paper, we prove the generalized Hyers--Ulam--Rassias stability for a ...
متن کاملStability of Functional Equations in Non-archimedean Spaces
A classical question in the theory of functional equations is the following: “When is it true that a function which approximately satisfies a functional equation E must be close to an exact solution of E?” If the problem accepts a solution, we say that the equation E is stable. The first stability problem concerning group homomorphisms was raised by Ulam [30] in 1940. We are given a group G and...
متن کاملPositive-additive functional equations in non-Archimedean $C^*$-algebras
Hensel [K. Hensel, Deutsch. Math. Verein, {6} (1897), 83-88.] discovered the $p$-adic number as a number theoretical analogue of power series in complex analysis. Fix a prime number $p$. for any nonzero rational number $x$, there exists a unique integer $n_x inmathbb{Z}$ such that $x = frac{a}{b}p^{n_x}$, where $a$ and $b$ are integers not divisible by $p$. Then $|x...
متن کاملStability of the quadratic functional equation in non-Archimedean L-fuzzy normed spaces
In this paper, we prove the generalized Hyers-Ulam stability of the quadratic functionalequation$$f(x+y)+f(x-y)=2f(x)+2f(y)$$in non-Archimedean $mathcal{L}$-fuzzy normed spaces.
متن کاملpositive-additive functional equations in non-archimedean $c^*$-algebras
hensel [k. hensel, deutsch. math. verein, {6} (1897), 83-88.] discovered the $p$-adic number as a number theoretical analogue of power series in complex analysis. fix a prime number $p$. for any nonzero rational number $x$, there exists a unique integer $n_x inmathbb{z}$ such that $x = frac{a}{b}p^{n_x}$, where $a$ and $b$ are integers not divisible by $p$. then $|x...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kyungpook mathematical journal
سال: 2013
ISSN: 1225-6951
DOI: 10.5666/kmj.2013.53.3.419